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Two versatile, high yielding, and efficient chemo-enzymatic methods for the synthesis of b-protected Asp
and c-protected Glu derivatives using Alcalase are described. The first method is based on the a-selective
enzymatic hydrolysis of symmetrical aspartyl and glutamyl diesters. The second method involving mixed
diesters comprises a three-step protocol using (i) a-selective enzymatic methyl-esterification, (ii) chem-
ical b-esterification, and finally (iii) a-selective enzymatic methyl ester hydrolysis. The yields of the puri-
fied b- and c-esters range from 77% to 91%.

� 2009 Elsevier Ltd. All rights reserved.
Protecting groups play a pivotal role in organic chemistry and
especially in peptide, carbohydrate, or nucleic acid synthesis. In
peptide synthesis, amine functionalities are usually protected as
carbamates, and carboxylic acid moieties are most often protected
as esters. A vast variety of esters have been developed to protect C-
terminal and side-chain carboxylic acids for different applications.
Orthogonality of these protecting groups and resistance to cou-
pling and deprotection reaction conditions are key factors for high
yields and for easy workup. For instance, allyl (All) esters, cleavable
with Pd(0),1 and trimethylsilylethyl (TMSE) esters, cleavable with
TBAF,2 are orthogonal to other commonly used protecting groups
such as tert-butyl (tBu) or methyl (Me) esters allowing selective
deprotection and modification of certain carboxylic acids during
peptide synthesis. Of special interest are selectively protected
aspartic acid (Asp) or glutamic acid (Glu) building blocks, which
are protected either at their a-carboxylic acid functionality or at
their b-(Asp) or c-(Glu) carboxylic acid moiety. These esters find
widespread application in on-resin synthesis of head-to-tail cyclic
peptides3 (using both Fmoc/tBu- and Boc/Bzl SPPS approaches),
side-chain lactam peptides,4 and branched peptides.5 Recently,
we described the selective a-carboxylic acid esterification of
N-protected amino acids, including Asp and Glu residues, using
the industrial enzyme Alcalase.6 Selective synthesis of b-protected
Asp and c-protected Glu derivatives however, remains a challenge.
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A number of synthetic strategies have been disclosed for
(semi-)selective b- and c-protection of Asp and Glu derivatives,
respectively.7 The most commonly used methods rely on the intra-
molecular anhydride formation of N-protected Asp/Glu derivatives
using a condensing reagent followed by moderately selective ring
opening with a nucleophile.8 Whereas with Glu residues a rela-
tively good selectivity of 9/1 of c- over a-ester can be obtained,
selective b-protection of Asp residues remains difficult and is often
low yielding.

Only a few chemo-enzymatic approaches toward aspartyl b-es-
ters have been reported in the literature. These approaches are based
on the a-selective hydrolysis of Asp diesters. However, the reported
a-selective hydrolysis with porcine liver esterase is only applicable
for N-terminal unprotected aspartic acid derivatives.9 Most prote-
ases proved to be unselective when N-unprotected aspartyl diesters
were used. Hydrolysis of N-protected aspartyl diesters with
papain,10 is limited to Cbz-Asp(OAll)-OAll. The very common N-ter-
minal Fmoc/Boc-protected b-esters of Asp and c-esters of Glu have
not been prepared enzymatically. Herein we demonstrate that the
cheap industrial protease Alcalase11 can catalyze the a-selective
hydrolysis of a wide range of N-protected Asp and Glu symmetrical
diesters. In addition, we report a versatile and high yielding three-
step protocol for the synthesis of N-protected b-aspartyl esters.

Alcalase is often used for the hydrolysis and/or resolution of
amino acid esters.12 Recently,6 we identified a versatile synthetic
method for various N-protected amino acid esters (i.e., methyl,
ethyl, benzyl, tert-butyl, allyl, and trimethylsilylethyl) using



Table 1
HPLC and isolated yields of the synthesized b- and c-esters

Compound Product HPLC yield (%) Isolated yield (%)

1 Cbz-Asp(OAll)-OH 96 87
2 Cbz-Glu(OAll)-OH 97 85
3 Boc-Asp(OAll)-OH 98 87
4 Boc-Glu(OAll)-OH 98 86
5 Fmoc-Asp(OAll)-OH 95 77
6 Fmoc-Glu(OAll)-OH 97 78
7 Cbz-Asp-(OTMSE)-OH 95 85
8 Fmoc-Asp-(OPTMSE)-OH 96 n.d.
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Scheme 2. Reaction conditions: (a) Alcalase-CLEA, 3 Å MS, MBTE/MeOH (14/1, v/v),
50 �C, 40 h; (b) EDC, DIPEA, AllOH, rt, 24 h or Boc2O, pyridine, DMAP, CH3CN/tBuOH
(2/1, v/v), rt, 24 h; (c) Alcalase-CLEA, pH 7.5 phosphate buffer/tBuOH or 1.4-dioxane
(1/1, v/v), 37 �C, 16 h.

Table 2
Yields of intermediates and Asp b-ester products

Compound Product Isolated yield (%)

9 Cbz-Asp-OMe 93
10a (R = tBu) Cbz-Asp(OtBu)-OMe 94
10b (R = All) Cbz-Asp(OAll)-OMe 92
11a (R = tBu) Cbz-Asp(OtBu)-OH 91
11b (R = All) Cbz-Asp(OAll)-OH 89
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Alcalase-cross-linked-enzyme-aggregates (CLEA)13 in dry organic
solvents. The hydrolysis of these esters proved to be easy and
quantitative. Encouraged by these results, we decided to focus on
the a-selective hydrolysis of N-protected aspartyl and glutamyl
diesters (Scheme 1).

N-protected aspartyl (n = 1) and glutamyl (n = 2) diesters 1–8
were synthesized using EDC and the appropriate alcohol.14 These
symmetrical diesters were hydrolyzed using Alcalase-CLEA in
water at pH 7.5 using tBuOH or 1,4-dioxane as a co-solvent for dis-
solving the starting materials.15

Gratifyingly, all the hydrolytic reactions were completely
a-selective, that is, no simultaneous b- or c-ester hydrolysis was
observed by HPLC. As shown in Table 1, very high yields of b-aspar-
tyl and c-glutamyl esters were obtained using a variety of
N-protecting groups. To our surprise, even sterically hindered di-
(2-phenyl-2-trimethylsilyl)ethyl (PTMSE) esters16 of Asp were
easily and a-selectively hydrolyzed by Alcalase-CLEA. The newly
synthesized esters were analyzed by NMR17 and were found to
be identical to those reported in the literature18 or to commercially
available samples,19 which clearly proved the selective a-hydroly-
sis of all the diesters used in this study.

However, as also disclosed by others,20 the di-tBu-ester deriva-
tives of Asp and Glu were not easily hydrolyzed enzymatically. We
envisioned that, by combining a-selective synthesis of N-protected
Asp esters with chemical b-esterification followed by an a-selec-
tive hydrolysis of the resulting diesters, we could obtain a feasible
approach toward b-protected Asp derivatives. Additionally, this
alternative strategy avoids the use of 2 equiv of an expensive
(e.g., TMSE-OH or PTMSE-OH) alcohol by preparation of a cheap
methyl ester as a temporary protecting group of the a-carboxylic
acid followed by chemical esterification of the b- or c-carboxylic
moiety (Scheme 2 and Table 2).

As shown in Table 2, the a-methyl esterification21 proceeded
smoothly and the chemical b-esterification, by activation with
either EDC22 for the All-ester or with Boc2O23 for the tBu-ester, fur-
nished the desired esters in high yields. Much to our satisfaction,
subsequent Alcalase-CLEA-mediated enzymatic hydrolysis of 10
(R = All or tBu) proceeded completely a-selectively giving the de-
sired b-protected Asp derivatives 11 in high yields.24 Although this
approach required three-reaction steps, the overall yields (76% for
Cbz-Asp(OAll)-OH) were considerably higher compared to the
overall yields obtained via hydrolysis of the diesters (57%) or those
obtained by chemical means (around 50%). Even more importantly,
this method allowed the synthesis of aspartyl b-esters which are
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Scheme 1. Reaction conditions: (a) EDC, HOAt, DIPEA, CH2Cl2/R2OH (25/1, v/v), rt,
24 h. (b) Alcalase-CLEA, pH 7.5 phosphate buffer/tBuOH or 1,4-dioxane (1/1, v/v),
37 �C, 16 h.
not available via the diester hydrolysis method, for example, Cbz-
Asp(OtBu)-OH.

In conclusion, via two attractive approaches, we have demon-
strated that the complete a-selectivity of Alcalase-CLEA in the syn-
thesis and hydrolysis of various esters of N-protected Asp and Glu
derivatives, can be utilized to prepare b-esters of N-protected
aspartic acid or c-esters of N-protected glutamic acid in high yields
and purity. These derivatives are very useful for the synthesis of
peptides and peptide derivatives.
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